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50 Years of Algorithms Research

…has focused on settings in which
reads & writes to memory have equal cost

But what if they have very DIFFERENT costs?
How would that impact Algorithm Design?
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Key Take-Aways

• Main memory will be persistent and asymmetric

– Reads much cheaper than Writes

• Very little work to date on Asymmetric Memory

– Not quite: space complexity, CRQW, RMRs, Flash…

• Highlights of our results to date:

– Models: (M,ω)-ARAM; with parallel & block variants

– Asymmetric memory is not like symmetric memory

– New techniques for old problems

– Lower bounds for block variant are depressing



5© Phillip B. GibbonsHow Emerging Memory Technologies Will Have You Rethinking Algorithm Design

Emerging Memory Technologies
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Emerging Memory Technologies

Motivation:

– DRAM (today’s main memory) is volatile

– DRAM energy cost is significant (~35% of DC energy)

– DRAM density (bits/area) is limited

Promising candidates:
– Phase-Change Memory (PCM)

– Spin-Torque Transfer Magnetic RAM (STT-RAM)

– Memristor-based Resistive RAM (ReRAM)

– Conductive-bridging RAM (CBRAM)

Key properties:

– Persistent, significantly lower energy, can be higher density

– Read latencies approaching DRAM, byte-addressable

3D XPoint
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Another Key Property:
Writes More Costly than Reads

In these emerging memory technologies, bits are
stored as “states” of the given material

• No energy to retain state

• Small energy to read state

- Low current for short duration

• Large energy to change state

- High current for long duration

Writes incur higher energy costs, higher latency, 
lower per-DIMM bandwidth (power envelope constraints), 

endurance problems

PCM
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Cost Examples from Literature
(Speculative)

• PCM: writes 15x slower, 15x less BW, 10x more energy

• PCM L3 Cache: writes up to 40x slower,17x more energy

• STT-RAM cell: writes 71x slower, 1000x more energy @ 

material level

• ReRAM DIMM: writes 117x slower, 125x more energy                                                         

• CBRAM: writes 50x more energy

Sources: [KPMWEVNBPA14] [DJX09] [XDJX11] [GZDCH13]

Costs are a well-kept secret by Vendors



9© Phillip B. GibbonsHow Emerging Memory Technologies Will Have You Rethinking Algorithm Design

Are We There Yet?

• 3D XPoint will first come out in SSD form factor

– No date announced: expectation is 2017

• Later will come out in DIMM form factor

– Main memory: Loads/Stores on memory bus

– No date announced: perhaps 2018

• Energy/density/persistence advantages
Projected to become dominant main memory 

In near future: 
Main memory will be persistent & asymmetric
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Write-Efficient Algorithm Design

Goal: Design write-efficient algorithms
(write-limited, write-avoiding)

• Fewer writes       Lower energy, Faster 

How we model the asymmetry: In asymmetric 
memory, writes are ω times more costly than reads
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How does one sort 𝑛 elements using 𝑂(𝑛 log 𝑛)
instructions (reads) but only 𝑂(𝑛) writes?

• Swap-based sorting (i.e. quicksort, heap sort) does 

𝑂(𝑛 log 𝑛) writes

• Mergesort requires 𝑛 writes for log 𝑛 rounds

Warm up: Write-efficient Sorting

Solution:
• Insert each key in random order 

into a binary search tree
• An in-order tree traversal yields

the sorted array
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Asymmetric Read-Write Costs: 

Prior Work (1)  

• Space complexity classes such as L

– Can repeatedly read input

– Only limited amount of working space

What’s missing: Doesn’t charge for number of writes

– OK to write every step

• Similarly, streaming algorithms have limited space

– But OK to write every step
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Asymmetric Read-Write Costs: 

Prior Work (2) 

• Reducing writes to contended shared memory vars

– Multiprocessor cache coherence serializes writes, but reads 

can occur in parallel 

– Concurrent-read-queue-write (CRQW) model [GMR98]

– Contention in asynchronous shared memory algs [DHW97]

– Etc, etc

What’s missing: Cost of writes to even un-contended vars

– OK to write every step to disjoint vars (disjoint cache lines)

• Similarly, reducing writes to minimize locking/synch

– But OK for sequential code to write like a maniac!
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Asymmetric Read-Write Costs: 

Prior Work (3)  

• Remote Memory References (RMR) [YA95]

– Only charge for remote memory references, 

i.e., references that require an interconnect traversal

– In cache-coherent multiprocessors, only charge for:

• A read(x) that gets its value from a write(x) by another process

• A write(x) that invalidates a copy of x at another process

– Thus, writes make it costly

What’s missing: Doesn’t charge for number of writes
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Asymmetric Read-Write Costs: 

Prior Work (4)  

• NAND Flash.  This work focused on:

– Asymmetric granularity of writes (must erase large blocks)

– Asymmetric endurance of writes [GT05, EGMP14]

No granularity issue for emerging NVM

– Byte-addressable for both reads and writes

Individual cell endurance not big issue for emerging NVM

– Can be handled by system software
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Key Take-Aways

• Main memory will be persistent and asymmetric

– Reads much cheaper than Writes

• Very little work to date on Asymmetric Memory

– Not quite: space complexity, CRQW, RMRs, Flash,…

• Highlights of our results to date:

– Models: (M,ω)-ARAM; with parallel & block variants

– Asymmetric memory is not like symmetric memory

– New techniques for old problems

– Lower bounds for block variant are depressing

You Are Here
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(𝑴,𝝎)-Asymmetric RAM (ARAM)

• Comprised of:

– processor executing RAM instructions on Θ(log 𝑛)-bit words

– a symmetric memory of 𝑀 words 

– an asymmetric memory of unbounded size, with write cost 𝜔

• ARAM cost Q(n):

• Time T(n) = Q(n)  +  # of instructions

CPU
write cost

𝜔

Asymmetric
MemorySymmetric

Memory

𝑀
words

1

𝝎

1

[BFGGS16]
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Write-efficient Algorithms

Problem Read 

(unchanged)

Previous 

write

Current

write

Reduction

ratio

Comparison sort Θ(𝑛 log𝑛) 𝑂(𝑛 log 𝑛) Θ(𝑛) 𝑂(log 𝑛)

Search tree, 

priority queue
Θ(log 𝑛) 𝑂(log 𝑛) Θ(1) 𝑂(log 𝑛)

2D convex hull, 

triangulation
Θ(𝑛 log 𝑛) 𝑂(𝑛 log 𝑛) Θ(𝑛) 𝑂(log 𝑛)

BFS, DFS, 

topological sort, 

bi-CC, SCC

Θ(𝑛 +𝑚) 𝑂(𝑛 + 𝑚) Θ(𝑛) 𝑂(𝑚/𝑛)

• Trivial

• Significant reduction.  M can be O(1)

zzzz
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Reduction in Writes depends on 
M, 𝝎, input size

Problem
ARAM cost 𝑄(𝑛,𝑚)

Classic algorithms New algorithms

Single-source 

shortest-path
𝑂 𝜔 𝑚 + 𝑛 log 𝑛

𝑂(

)

min(

)

𝑛 𝜔 +𝑚/𝑀 ,
𝜔 𝑚 + 𝑛 log 𝑛 ,
𝑚(𝜔 + log 𝑛)

Minimum

spanning tree
𝑂 𝑚𝜔

𝑂(min(𝑚𝜔,
𝑚 min(log 𝑛 , 𝑛/𝑀) + 𝜔𝑛))

• SSSP: Phased Dijkstra that uses phases & keeps a 

truncated priority queue in symmetric memory

• Write-efficient bookkeeping is often challenging
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• New FFT lower bound technique (generalizes [HK81])

• Gap between comparison sorting & sorting networks

– No gap for classic RAM setting, PRAM, etc

No (significant) improvement with 
cheaper reads

Problem

ARAM cost Q(n)

Classic 

Algorithm

New Lower 

Bound

Sorting networks and 

Fast Fourier Transform
Θ 𝜔𝑛

log 𝑛

log𝑀
Θ 𝜔𝑛

log 𝑛

log𝜔𝑀

Diamond DAG (ala 

LCS, edit distance)
Θ

𝑛2𝜔

𝑀
Θ

𝑛2𝜔

𝑀
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An Example of a Diamond DAG: 
Longest Common Subsequence (LCS)

A C G T A T

A

T

C

G

A

T
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An Example of a Diamond DAG: 
Longest Common Subsequence (LCS)

1 1 1 1 1 1

1 1 1 2 2 2

1 2 2 2 2 2

1 2 3 3 3 3

1 2 3 3 4 4

1 2 3 4 4 5

A C G T A T

A

T

C

G

A

T
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• 𝑘 × 𝑘 diamond requires 𝑘 storage to compute [CS76] 

• Computing any 2𝑀 × 2𝑀 diamond requires 𝑀 writes
to the asymmetric memory

– 2𝑀 storage space, 𝑀 from symmetric memory

• Tiling with 2𝑀 × 2𝑀 sub-DAGs yields 𝑛2/ 2𝑀 2 tiles

Proof sketch of 𝚯
𝝎𝒏𝟐

𝑴
diamond DAG lower bound

2𝑀 rows
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• DAG rule: Compute a node after all its inputs ready

• By breaking this rule: LCS cost reduced by 𝑂(𝜔1/3)
– New “path sketch” technique

• Classic RAM: No gap between Diamond DAG & LCS/Edit Distance
• Classic RAM: No gap between Sorting Networks & Comparison Sort

Asymmetric Memory is not like 
Symmetric Memory 

Problem

ARAM cost Q(n)

Classic 

Algorithm

New Lower 

Bound

Sorting networks and 

Fast Fourier Transform
Θ 𝜔𝑛

log 𝑛

log𝑀
Θ 𝜔𝑛

log 𝑛

log𝜔𝑀

Diamond DAG (ala 

LCS, edit distance)
Θ

𝑛2𝜔

𝑀
Θ

𝑛2𝜔

𝑀
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Asymmetric Shared Memory

• (𝑴,𝝎)-Asymmetric PRAM  (machine model)

– P processors, each with local memory of size 𝑴

– Unbounded asymmetric shared memory, write cost 𝝎

• Asymmetric Nested-Parallel Model

– Processor oblivious

– Provably good with work-stealing schedulers

[BBFGGMS16]

[BFGGS15]



Reduce on Asymmetric PRAM Model

Reduce(list L, function F, identity I){

if(L.length == 0){

return I;

}

if(L.length == 1){

return L[0];

}

L1, L2 = split(L);

R1 = Reduce(L1, F, I);

R2 = Reduce(L2, F, I);

return F(R1, R2);

}

 Assume 𝜃 1 work for F

 Each write costs ω

 Split takes 𝜃 𝜔 work

 Work

 𝑊 𝑛 = 2𝑊
𝑛

2
+ 𝜃 𝜔

 𝑊 𝑛 = 𝜃 𝜔𝑛

 Span

 𝐷 𝑛 = 𝐷
𝑛

2
+ 𝜃 𝜔

 𝐷 𝑛 = 𝜃 𝜔 log 𝑛

26

Too conservative: All intermediate results written to shared memory

Must explicitly schedule computation on processors



Asymmetric Nested-Parallel (NP) Model: Fork-Join

Parent

Parent

Child 1 Child 2

Join

Fork

Root 

Suspended

27



ω

1
Stack 

Memory

• Stack 
Allocated

• Symmetric
• Limited Size

Asymmetric NP Model: Memory Model

1

1

CPU     

• Unit cost per 
instruction

Heap 
Memory

• Heap 
Allocated

• Asymmetric
• Infinite Size

28

Key feature: Algorithmic cost model
Processor-oblivious



Constant 
Stack Memory

Constant 
Stack Memory

Ml Stack Memory

Asymmetric NP Model: Stack Memory

Root

Root

A

B

A

C D

29



Asymmetric NP Model: Work Stealing Issues

30

 Thieves need access to stack memory of stolen task

 Good news: Non-leaf stacks are 𝑂 1 size

 Approach 1: Write out all stack memory every fork

 Have to pay 𝜃 𝜔 for each fork!

 Approach 2: Write stack memory only on steal

 Challenge: Need to limit number of stacks written per steal

Heap

Stack 1

Proc 1

Stack 2

Proc 2

Stack 3

Proc 3



Write Stack Memory Only on Steal:
Problem Scenario

Root

A B

C D

E F

G H
Thread 3 

Steal

Thread 2 
Steal

31

Thread 1 started 
at root, now 
executing G



Asymmetric NP Model: Work Stealing Theorem

A computation with binary branching factor on the 
Asymmetric NP model can be simulated on the 

(M, ω)-Asymmetric PRAM machine model in:

𝑂
𝑊

𝑃
+ 𝜔𝐷 Expected Time

where:

P = processors δ = nesting depth

D = span 𝑀𝑙 = leaf stack memory

W = work M = 𝜃 δ +𝑀𝑙

32



Reduce: Asymmetric NP Model

Reduce(list L, function F, identity I){

if(L.length == 0){

return I;

}

if(L.length == 1){

return L[0];

}

L1, L2 = split(L);

R1 = Reduce(L1, F, I);

R2 = Reduce(L2, F, I);

return F(R1, R2);

}

 Assume 𝜃 1 work for F

 Minimize writes to large 
memory

 Children are forked tasks

 Tasks store list start & end

 Only write final answer 

 Work

 𝑊 𝑛 = 𝜃 𝑛 + 𝜔

 Span

 𝐷 𝑛 = 𝜃 log 𝑛 + 𝜔

33

Intermediate results NOT written to memory
Scheduler handles inter-processor communication & its costs



Write-Efficient Shared Memory Algorithms

34

Problem Work (W) Span (D) Reduction of Writes

Reduce 𝜃 𝑛 + 𝜔 𝜃 log𝑛 + 𝜔 𝜃 𝑛

Ordered Filter 𝜃 𝑛 + 𝜔𝑘 ∗ 𝑂 𝜔 log𝑛 ∗ 𝜃 log𝑛

List Contraction 𝜃 𝑛 + 𝜔 𝑂 𝜔 log𝑛 ∗ 𝜃 ω

Tree Contraction 𝜃 𝑛 + 𝜔 𝑂 𝜔 log𝑛 ∗ 𝜃 𝜔

Minimum 
Spanning Tree

𝑂 ൬

൰

𝛼 𝑛 𝑚

+ 𝜔𝑛 log min
𝑚

𝑛
, 𝜔

𝑂 𝜔polylog 𝑚 ∗
𝑂

𝑚

𝑛 ⋅ log min
𝑚
𝑛
,𝜔

2D Convex Hull 𝑂 𝑛 log𝑘 + 𝜔𝑛 log log 𝑘 ^
𝑂 𝜔 log𝑛 2 ∗ Output Sensitive

BFS Tree 𝜃 𝜔𝑛 +𝑚 ^ 𝜃 𝜔δ log𝑛 ∗
𝑂

𝑚

𝑛

𝑘 = output size
𝛿 = graph diameter

𝛼 = inverse Ackerman function

∗
= with high probability

^
= expected

[BBFGGMS16]



Tree Contraction: Current Methods 

 Rake leaves

 Compress Chains

 Each rake or compress 
operation costs a write

 Total number of rakes 
and compresses is 𝜃 𝑛

 Work is 𝜃 𝜔𝑛

 Span is 𝜃 𝜔 log 𝑛

++

x

+

3 2 x

1 4

35



Tree Contraction: High-level Approach

 Assume that ML is Ω 𝜔

 Partition the tree into 

𝜃
𝑛

𝜔
components of size 

𝜃 𝜔

 Sequentially contract 
each component

 Use a classic parallel 
algorithm to contract the 
resulting tree of size 

𝜃
𝑛

𝜔

36



Tree Contraction: Classic Partitioning

 Follow the Euler Tour 

 Generate subtree size

 Find the m-critical points

 Partition the tree

 Requires a write for each 
node

37

15

7 7

3 3 3 3

1 1 1 1 1 1 1 1



Tree Contraction: Write-Efficient Partitioning

 Mark each node with 

probability 
1

𝜔

 Traverse the Euler Tour 
from each marked node 
and mark every ωth node

 Mark the highest node 
on each path between 
marked nodes

 Each marked node starts 
a new component

38



Tree Contraction: Contract-ability of Partitions

39

= Unmarked node

Marked in step 1 =         

= Marked in step 3



Tree Contraction: A New Approach 

 Assume that ML is Ω 𝜔

 Partition the tree into 𝜃
𝑛

𝜔
components of size 𝜃 𝜔

 Sequentially contract each component

 Use a classic algorithm to contract the resulting tree of 

size 𝜃
𝑛

𝜔

Work: 𝜃 𝑛 +
𝑛

𝜔
∗ 𝜔 + 𝜃 𝑛 +

𝑛

𝜔
∗ 𝜔 + 𝜃 𝑛 = 𝜃 𝑛 + 𝜔

Span: 𝜃 𝜔 log 𝑛 + 𝜃 𝜔 + 𝜃 𝜔 log
𝑛

𝜔
= 𝜃 𝜔 log 𝑛

40
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⨯1

• AEM has two memory transfer instructions: 

– Read transfer: load a block from large-memory

– Write transfer: write a block to large-memory

• The complexity of an algorithm on the AEM model 
(I/O complexity) is measured by:

# 𝑟𝑒𝑎𝑑 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝜔 ⋅ # 𝑤𝑟𝑖𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

The Asymmetric External Memory model

CPU

Asymmetric

Large-memory

𝑀/𝐵

𝐵

0

1

→ 𝝎

Small-memory

[BFGGS15]
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• Sorting 𝒏 records in AEM model has I/O complexity of 

𝑶
𝝎𝒏

𝑩
𝐥𝐨𝐠 𝝎𝑴

𝑩

𝒏

𝑩

can be achieved by:
– Multi-way mergesort

– Sample sort

– Heap sort based on buffer trees

• Matching lower bound [Sitchinava16]

– No asymptotic advantage whenever 𝜔 is 𝑂 𝑀𝑐 for a constant c

– Depressing…because so many problems can’t beat an EM sorting 
lower bound

Sorting algorithms on the 

Asymmetric EM model
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Key Take-Aways

• Main memory will be persistent and asymmetric

– Reads much cheaper than Writes

• Very little work to date on Asymmetric Memory

– Not quite: space complexity, CRQW, RMRs, Flash,…

• Highlights of our results to date:

– Models: (M,ω)-ARAM; with parallel & block variants

– Asymmetric memory is not like symmetric memory

– New techniques for old problems

– Lower bounds for block variant are depressing

You Are Here
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• National Science Foundation

• Natural Sciences and Engineering Research Council of Canada

• Miller Institute for Basic Research in Sciences at UC Berkeley

• Intel (via ISTC for Cloud Computing & new ISTC for Visual Cloud)
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McGuffey
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Shun

& Sponsors

(Credit to Yan and Charlie for some of these slides) 
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